avatar
Articles
165
Tags
34
Categories
0

Home
Archives
Tags
Categories
List
  • Music
  • Movie
Link
About
ALTNT's Hexo Blog
Home
Archives
Tags
Categories
List
  • Music
  • Movie
Link
About

Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models

Created2024-08-28|Updated2024-08-28
|Post Views:
Author: ALTNT
Link: http://blog.705553939.xyz/2024/08/28/crop_classification/Crop%20classification/WinterWheatYieldAssessmentfromLandsat8andSentinel-2DataIncorporatingSurfaceReflectanceThroughPhenologicalFittingintoRegressionYieldModels/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
crop classification
Previous
Satellite Image Time Series Classification with Pixel-Set Encoders and Temporal Self-Attention
Next
Enhancing food crop classification in agriculture through dipper throat optimization and deep learning with remote sensing
Related Articles
2024-09-12
A Deep Learning Framework under Attention Mechanism for Wheat Yield Estimation Using Remotely Sensed Indices in the Guanzhong Plain
2024-10-08
Temporal Convolutional Neural Network for the Classification of Satellite Image
2024-10-27
Self-Supervised Learning of Remote Sensing Scene Representations Using Contrastive Multiview Coding
2025-02-17
Climate-adaptive emergency crop monitoring in inaccessible regions with satellite imagery
2024-10-07
记录如何生产 CACM 数据集过程
2024-09-24
Towards interpreting multi-temporal deep learning models in crop mapping
avatar
ALTNT
Articles
165
Tags
34
Categories
0
Follow Me
Announcement
This is my Blog
Contents
  1. 1. Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models
    1. 1.1. 摘要
    2. 1.2. 1、介绍
    3. 1.3. 2、材料
      1. 1.3.1. 2.1. 研究区域和参考数据
      2. 1.3.2. 2.2. 陆地卫星8号/陆地成像仪(OLI)和哨兵2号A/多光谱成像仪(MSI)数据集
      3. 1.3.3. 2.3. 气象数据
    4. 1.4. 3、 方法
      1. 1.4.1. 3.1、 总体概述
      2. 1.4.2. 3.2. 冬季作物类型制图。
      3. 1.4.3. 3.3. 冬小麦产量评估
        1. 1.4.3.1. (冬小麦产量评估方法概述)
        2. 1.4.3.2. (卫星数据与参考产量的关联)
        3. 1.4.3.3. (使用二次模型与气象数据结合)
          1. 1.4.3.3.1. (建立二次模型)
          2. 1.4.3.3.2. (计算生长度日(GDD)和累积生长度日(AGDD))
        4. 1.4.3.4. (建立产量与卫星特征的广义关系)
Recent Post
周报2025年6月8日2025-06-09
The 20 m Africa rice distribution map of 20232025-06-04
DCM————DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping2025-06-04
重新复现CACM记录2025-06-04
机器学习相关概念2025-05-26
©2020 - 2025 By ALTNT
Framework Hexo|Theme Butterfly