avatar
Articles
165
Tags
34
Categories
0

Home
Archives
Tags
Categories
List
  • Music
  • Movie
Link
About
ALTNT's Hexo Blog
Home
Archives
Tags
Categories
List
  • Music
  • Movie
Link
About

Boosting crop classification by hierarchically fusing satellite, rotational, and contextual data

Created2024-09-03|Updated2024-09-03
|Post Views:
Author: ALTNT
Link: http://blog.705553939.xyz/2024/09/03/crop_classification/2024-rse-papers-for-crop-classification/rse-2024-Boosting-crop-classification-by-hierarchically-fusing-satellite-rotational-and-contextual-data/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
crop classification
Previous
Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques
Next
入学材料
Related Articles
2024-09-12
A Deep Learning Framework under Attention Mechanism for Wheat Yield Estimation Using Remotely Sensed Indices in the Guanzhong Plain
2024-10-08
Temporal Convolutional Neural Network for the Classification of Satellite Image
2024-10-27
Self-Supervised Learning of Remote Sensing Scene Representations Using Contrastive Multiview Coding
2025-02-17
Climate-adaptive emergency crop monitoring in inaccessible regions with satellite imagery
2024-10-07
记录如何生产 CACM 数据集过程
2024-09-24
Towards interpreting multi-temporal deep learning models in crop mapping
avatar
ALTNT
Articles
165
Tags
34
Categories
0
Follow Me
Announcement
This is my Blog
Contents
  1. 1. 通过分层融合卫星、rotational和上下文数据来促进作物分类
  2. 2. Boosting crop classification by hierarchically fusing satellite, rotational, and contextual data
    1. 2.1. 摘要
    2. 2.2. 1、引言
      1. 2.2.1. 1.1 相关工作
        1. 2.2.1.1. 1.1. 基于地球观测的模型
        2. 2.2.1.2. 1.1.2. 可转移性和包含未见过标签的领域适应
        3. 2.2.1.3. 1.1.3. early-season classification
        4. 2.2.1.4. 1.1.4. 基于作物轮作的模型crop-rotation-based models
        5. 2.2.1.5. 1.1.5. 类别层次结构
      2. 2.2.2. 1.2. 定位与目标
    3. 2.3. 2、 材料
      1. 2.3.1. 2.1. 作物参考数据、研究区域以及 地块数据(parcel data)的协调统一(harmonization)
      2. 2.3.2. 2.2. 随时间提取几何最小公共地块(提取出在不同季节中相对稳定的区域)
      3. 2.3.3. 2.3. 地球观测数据处理
    4. 2.4. 3、方法
      1. 2.4.1. 3.1、模型描述
      2. 2.4.2. 3.1.1. 特征提取
      3. 2.4.3. 3.1.2. Architecture of the models
Recent Post
周报2025年6月8日2025-06-09
The 20 m Africa rice distribution map of 20232025-06-04
DCM————DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping2025-06-04
重新复现CACM记录2025-06-04
机器学习相关概念2025-05-26
©2020 - 2025 By ALTNT
Framework Hexo|Theme Butterfly