avatar
Articles
165
Tags
34
Categories
0

Home
Archives
Tags
Categories
List
  • Music
  • Movie
Link
About
ALTNT's Hexo Blog
Home
Archives
Tags
Categories
List
  • Music
  • Movie
Link
About

TimesURL:Self-supervised Contrastive Learning for Universal Time Series Representation Learning

Created2024-11-04|Updated2025-02-28
|Post Views:
Author: ALTNT
Link: http://blog.705553939.xyz/2024/11/04/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/%E8%87%AA%E7%9B%91%E7%9D%A3/2024-AAAI2024-TimesURL/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Self-Supervise
Previous
AllClear:A Comprehensive Dataset and Benchmark for Cloud Removal in Satellite Imagery
Next
Self-Supervised Transformer for Sparse and Irregularly Sampled Multivariate Clinical Time-Series
Related Articles
2024-11-04
AllClear:A Comprehensive Dataset and Benchmark for Cloud Removal in Satellite Imagery
2025-02-04
A_Simple_Framework_for_Contrastive_Learning of_Visual_Representations
2024-12-02
Contrastive Multiview Coding
2024-12-11
Supervised Contrastive Learning
2024-11-02
Contrastive Graph Transformer Network for Personality Detection
2024-11-20
TimesURL:Self-supervised Contrastive Learning for Universal Time Series Representation Learning
avatar
ALTNT
Articles
165
Tags
34
Categories
0
Follow Me
Announcement
This is my Blog
Contents
  1. 1. TimesURL: Self-supervised Contrastive Learning for Universal Time Series Representation Learning
    1. 1.1. 摘要
    2. 1.2. 引言
    3. 1.3. 相关工作
      1. 1.3.1. 时间序列的无监督表示学习。
      2. 1.3.2. 时间序列对比学习。
    4. 1.4. Proposed TimesURL Framework
      1. 1.4.1. 表示学习问题表述。
      2. 1.4.2. 方法介绍。
      3. 1.4.3. FTAug (Frequency - Temporal - Based Augmentation 基于频率 - 时间的增强方法)方法
        1. 1.4.3.1. 频率混合。
        2. 1.4.3.2. 随机裁剪。
      4. 1.4.4. Double Universum Learning
      5. 1.4.5. 对比学习在片段级信息中的应用
      6. 1.4.6. 实例级信息的时间重建
    5. 1.5. 实验
      1. 1.5.1. 实施
      2. 1.5.2. Baselines
        1. 1.5.2.1. 预测:
        2. 1.5.2.2. 分类:
        3. 1.5.2.3. 插补:
        4. 1.5.2.4. 异常检测:
      3. 1.5.3. 分类
        1. 1.5.3.1. setup:
        2. 1.5.3.2. 结果:
      4. 1.5.4. 插补
        1. 1.5.4.1. setup
        2. 1.5.4.2. 结果
      5. 1.5.5. 短期和长期预测
        1. 1.5.5.1. setup
        2. 1.5.5.2. 结果
      6. 1.5.6. 异常检测
        1. 1.5.6.1. setup
      7. 1.5.7. 迁移学习
      8. 1.5.8. 消融研究
    6. 1.6. 结论
Recent Post
周报2025年6月8日2025-06-09
The 20 m Africa rice distribution map of 20232025-06-04
DCM————DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping2025-06-04
重新复现CACM记录2025-06-04
机器学习相关概念2025-05-26
©2020 - 2025 By ALTNT
Framework Hexo|Theme Butterfly