Articles
165
Tags
34
Categories
0
Home
Archives
Tags
Categories
List
Music
Movie
Link
About
ALTNT's Hexo Blog
Home
Archives
Tags
Categories
List
Music
Movie
Link
About
End-to-end learned early classification of time series for in-season crop type mapping
Created
2025-02-28
|
Updated
2025-03-01
|
Post Views:
Hey, password is required here.
Author:
ALTNT
Link:
http://blog.705553939.xyz/2025/02/28/crop_classification/Crop%20classification/2023-ISPRS-IF_10.6-ELECTS/
Copyright Notice:
All articles in this blog are licensed under
CC BY-NC-SA 4.0
unless stating additionally.
crop classification
Previous
Linearly interpolating missing values in time series helps little for land cover classification using recurrent or attention networks
Next
Evaluation of Five Deep Learning Models for Crop Type Mapping Using Sentinel-2 Time Series Images with Missing Information
Related Articles
2024-09-12
A Deep Learning Framework under Attention Mechanism for Wheat Yield Estimation Using Remotely Sensed Indices in the Guanzhong Plain
2024-10-08
Temporal Convolutional Neural Network for the Classification of Satellite Image
2024-10-27
Self-Supervised Learning of Remote Sensing Scene Representations Using Contrastive Multiview Coding
2025-02-17
Climate-adaptive emergency crop monitoring in inaccessible regions with satellite imagery
2024-10-07
记录如何生产 CACM 数据集过程
2024-09-24
Towards interpreting multi-temporal deep learning models in crop mapping
ALTNT
Articles
165
Tags
34
Categories
0
Follow Me
Announcement
This is my Blog
Contents
1.
End-to-end learned early classification of time series for in-season crop type mapping
2.
端到端学习的时间序列早期分类用于生长季作物类型制图
2.1.
摘要
2.2.
引言
2.3.
方法
2.3.1.
3.1 模型
2.3.2.
3.2 ELECTS损失函数
2.3.3.
3.3 实现细节
2.3.4.
3.4 模型评估
2.4.
4. 结果
2.4.1.
4.1 准确性评估
2.4.1.1.
4.1.1 单地块预测
2.4.1.2.
4.1.2 不同时间的地块分类
2.4.1.3.
4.1.3 定量预测准确性
2.4.2.
4.2. 早期性评估
2.4.3.
4.3 ELECTS在不同数据集上的适用性
2.4.3.1.
4.3.1 欧洲的大规模数据集
2.4.3.2.
4.3.2 非洲的小规模数据集
2.5.
5. 讨论
Recent Post
周报2025年6月8日
2025-06-09
The 20 m Africa rice distribution map of 2023
2025-06-04
DCM————DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping
2025-06-04
重新复现CACM记录
2025-06-04
机器学习相关概念
2025-05-26