Learning the Optimal Stopping for Early Classification within Finite Horizons via Sequential Probability Ratio Test
Created|Updated
|Post Views:
Author: ALTNT
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Announcement
This is my Blog
Contents
- 1. DINOv2:
Learning Robust Visual Features without Supervision
- 1.1. 一、研究背景与目标
- 1.2. 二、核心技术方案
- 1.3. 三、实验验证与结果
- 1.4. 四、公平性与环境影响
- 1.5. 五、结论与未来工作
- 1.6. 六、关键资源
- 1.7. 摘要
- 1.8. 1 引言
- 1.9. 2 相关工作
- 1.10. 3 数据处理
- 1.11. 4 判别式自监督预训练
- 1.11.1. 4.1 图像级目标(Image-level objective,Caron等人,2021)
- 1.11.2. 4.2 图像块级目标(Patch-level objective,Zhou等人,2022a)
- 1.11.3. 4.3 解耦两类目标的头部权重(Untying head weights between both objectives)
- 1.11.4. 4.4 Sinkhorn-Knopp中心化(Sinkhorn-Knopp centering,Caron等人,2020)
- 1.11.5. 4.5 KoLeo正则化(KoLeo regularizer,Sablayrolles等人,2019)
- 1.11.6. 4.6 分辨率适配(Adapting the resolution,Touvron等人,2019)
- 1.12. 5 高效实现方案
- 1.13. 6 消融实验
- 1.14. 7 实验结果
- 1.15. 8 公平性与偏差分析
- 1.16. 10 未来工作与讨论
